Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 26(6): 1032-1041, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280397

RESUMO

Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.


Assuntos
Antidepressivos , Alucinógenos , Dietilamida do Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sítios de Ligação , Simulação de Dinâmica Molecular , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais , Receptor trkB/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Antidepressivos/metabolismo , Regulação Alostérica , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Embrião de Mamíferos/citologia , Neurônios/efeitos dos fármacos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacologia
2.
Eur J Neurosci ; 57(8): 1215-1224, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36876503

RESUMO

Brain derived neurotrophic factor (BDNF) and its receptor tropomyosin kinase receptor B (TRKB) are key regulators of activity-dependent plasticity in the brain. TRKB is the target for both slow- and rapid-acting antidepressants and BDNF-TRKB system mediates the plasticity-inducing effects of antidepressants through their downstream targets. Particularly, the protein complexes that regulate the trafficking and synapse recruitment of TRKB receptors might be crucial in this process. In the present study, we investigated the interaction of TRKB with the postsynaptic density protein 95 (PSD95). We found that antidepressants increase the TRKB:PSD95 interaction in adult mouse hippocampus. Fluoxetine, a slow-acting antidepressant, increases this interaction only after a long-term (7 days) treatment, while (2R,6R)-hydroxynorketamine (RHNK), an active metabolite of rapid-acting antidepressant ketamine, achieves this within a short treatment regimen (3 days). Moreover, the drug-induced changes of TRKB:PSD95 interaction correlate with drug latency in behaviour, observed in mice subjected to an object location memory test (OLM). While silencing of PSD95 by viral delivery of shRNA in hippocampus abolished the RHNK-induced plasticity in mice in OLM, overexpression of PSD95 shortened the fluoxetine latency. In summary, changes in the TRKB:PSD95 interaction contribute to differences observed in drug latency. This study sheds a light on a novel mechanism of action of different classes of antidepressants.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fluoxetina , Animais , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
Eur J Neurosci ; 55(9-10): 2421-2434, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33170977

RESUMO

It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor nω -propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.


Assuntos
Hipocampo , Óxido Nítrico Sintase , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Inibidores Enzimáticos/farmacologia , Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I , RNA Mensageiro/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Fisiológico
4.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451870

RESUMO

Blockers of angiotensin II type 1 receptor (AT1R) exert antidepressant-like effects by indirectly facilitating the activation of the angiotensin II type 2 receptor (AT2R), which leads to increased surface expression and transactivation of tropomyosin-related kinase B receptors (TRKB). Compound 21 (C21) is a non-peptide AT2R agonist that produces neuroprotective effects. However, the behavioral effects of C21 and its involvement with the brain-derived neurotrophic factor (BDNF)-TRKB system still need further investigation. The aim of the present study was to assess the effect of C21 on the activation of TRKB and its consequences on conditioned fear. The administration of C21 (0.1-10 µM/15 min) increased the surface levels of TRKB but was not sufficient to increase the levels of phosphorylated TRKB (pTRKB) in cultured cortical neurons from rat embryos. Consistent with increased TRKB surface expression, C21 (10 µM/15 min or 3 days) facilitated the effect of BDNF (0.1 ng/mL/15 min) on pTRKB in these cells. In contextual fear conditioning, the freezing time of C21-treated (administered intranasally) wild-type mice was decreased compared to the vehicle-treated group, but no effect of C21 was observed in BDNF.het animals. We observed no effect of C21 in the elevated plus-maze test for anxiety. Taken together, our results indicate that C21 facilitated BDNF effect by increasing the levels of TRKB on the cell surface and reduced the freezing time of mice in a BDNF-dependent manner, but not through a general anxiolytic-like effect.

5.
Eur J Neurosci ; 53(10): 3311-3322, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33825223

RESUMO

Cholesterol is an essential constituent of cell membranes. The discovery of cholesterol-recognition amino acid consensus (CRAC) motif in proteins indicated a putative direct, non-covalent interaction between cholesterol and proteins. In the present study, we evaluated the presence of a CRAC motif and its inverted version (CARC) in the transmembrane region (TMR) of the tyrosine kinase receptor family (RTK) in several species using in silico methods. CRAC motifs were found across all species analyzed, while CARC was found only in vertebrates. The tropomyosin-related kinase B (TRKB), a member of the RTK family, through interaction with its endogenous ligand brain-derived neurotrophic factor (BDNF) is a core participant in the neuronal plasticity process and exhibits a CARC motif in its TMR. Upon identifying the conserved CARC motif in the TRKB, we performed molecular dynamics simulations of the mouse TRKB.TMR. The simulations indicated that cholesterol interaction with the TRKB CARC motif occurs mainly at the central Y433 residue. Our binding assay suggested a bell-shaped effect of cholesterol on BDNF interaction with TRKB receptors, and our results suggest that CARC/CRAC motifs may play a role in the function of the RTK family TMR.


Assuntos
Colesterol , Receptores Proteína Tirosina Quinases , Animais , Fator Neurotrófico Derivado do Encéfalo , Membrana Celular , Humanos , Ligantes , Camundongos , Domínios Proteicos , Receptor trkB
6.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606976

RESUMO

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Assuntos
Antidepressivos/farmacologia , Receptor trkB/metabolismo , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Colesterol/metabolismo , Embrião de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Modelos Animais , Simulação de Dinâmica Molecular , Domínios Proteicos , Ratos , Receptor trkB/química , Córtex Visual/metabolismo
7.
Behav Brain Res ; 404: 113159, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571572

RESUMO

Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor-mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.


Assuntos
Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Western Blotting , Teste de Labirinto em Cruz Elevado , Fluoxetina/farmacologia , Imipramina/farmacologia , Indóis/farmacologia , Masculino , Teste de Campo Aberto/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
8.
PeerJ ; 7: e7834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31656696

RESUMO

Purinergic receptors, especially P2RX, are associated to the severity of symptoms in patients suffering from depressive and bipolar disorders, and genetic deletion or pharmacological blockade of P2RX7 induces antidepressant-like effect in preclinical models. However, there is scarce evidence about the alterations in P2RX7 or P2RX4 levels and in behavioral consequences induced by previous exposure to stress, a major risk factor for depression in humans. In the present study, we evaluated the effect of imipramine (IMI) on P2RX7 and P2RX4 levels in dorsal and ventral hippocampus as well as in the frontal cortex of rats submitted to the pretest session of learned helplessness (LH) paradigm. Repeated, but not acute administration of IMI (15 mg/kg ip) reduced the levels of both P2RX7 and P2RX4 in the ventral, but not in dorsal hippocampus or frontal cortex. In addition, we tested the effect of P2RX7/P2RX4 antagonist brilliant blue G (BBG: 25 or 50 mg/kg ip) on the LH paradigm. We observed that repeated (7 days) but not acute (1 day) treatment with BBG (50 mg) reduced the number of failures to escape the shocks in the test session, a parameter mimicked by the same regimen of IMI treatment. Taken together, our data indicates that pharmacological blockade or decrease in the expression of P2RX7 is associated to the antidepressant-like behavior observed in the LH paradigm after repeated drug administration.

9.
J Biol Chem ; 294(48): 18150-18161, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31631060

RESUMO

Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking µ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Antidepressivos/farmacologia , Endocitose/efeitos dos fármacos , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/metabolismo , Masculino , Camundongos
10.
PeerJ ; 7: e6493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809460

RESUMO

BACKGROUND: Administration of anandamide (AEA) or 2-arachidonoylglycerol (2AG) induces CB1 coupling and activation of TRKB receptors, regulating the neuronal migration and maturation in the developing cortex. However, at higher concentrations AEA also engages vanilloid receptor TRPV1, usually with opposed consequences on behavior. METHODS AND RESULTS: Using primary cell cultures from the cortex of rat embryos (E18) we determined the effects of AEA on phosphorylated TRKB (pTRK). We observed that AEA (at 100 and 200 nM) induced a significant increase in pTRK levels. Such effect of AEA at 100 nM was blocked by pretreatment with the CB1 antagonist AM251 (200 nM) and, at the higher concentration of 200 nM by the TRPV1 antagonist capsazepine (200 nM), but mildly attenuated by AM251. Interestingly, the effect of AEA or capsaicin (a TRPV1 agonist, also at 200 nM) on pTRK was blocked by TRKB.Fc (a soluble form of TRKB able to bind BDNF) or capsazepine, suggesting a mechanism dependent on BDNF release. Using the marble-burying test (MBT) in mice, we observed that the local administration of ACEA (a CB1 agonist) into the prelimbic region of prefrontal cortex (PL-PFC) was sufficient to reduce the burying behavior, while capsaicin or BDNF exerted the opposite effect, increasing the number of buried marbles. In addition, both ACEA and capsaicin effects were blocked by previous administration of k252a (an antagonist of TRK receptors) into PL-PFC. The effect of systemically injected CB1 agonist WIN55,212-2 was blocked by previous administration of k252a. We also observed a partial colocalization of CB1/TRPV1/TRKB in the PL-PFC, and the localization of TRPV1 in CaMK2+ cells. CONCLUSION: Taken together, our data indicate that anandamide engages a coordinated activation of TRKB, via CB1 and TRPV1. Thus, acting upon CB1 and TRPV1, AEA could regulate the TRKB-dependent plasticity in both pre- and postsynaptic compartments.

11.
Neurosci Biobehav Rev ; 90: 70-83, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626490

RESUMO

Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.


Assuntos
Antidepressivos/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Encéfalo/metabolismo , Depressão/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
12.
PeerJ ; 6: e4635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682419

RESUMO

BACKGROUND: Trichotillomania (TTM) is an impulse control disorder characterized by repetitive hair pulling/trimming. Barbering behavior (BB) observed in laboratory animals is proposed as a model of TTM. The neurobiological basis of TTM is unclear, but involves striatal hyperactivity and hypoactivation of the prefrontal cortex. METHODS: In this study, we evaluated the BB in knockout mice for the inducible isoform of nitric oxide synthase (NOS2KO) and the consequences of silencing this enzyme in PC12 cell differentiation. RESULTS: NOS2KO exhibit exacerbated BB, starting four weeks of age, and increased repetitive movements compared to wild-type mice (WT). The expression of BB was attenuated by repeated treatment with clomipramine, a clinically approved drug to treat TTM in humans, or memantine, an antagonist of NMDA receptors, as well as partial rescue of NOS2 expression in haploinsufficient animals. The silencing of NOS2 expression reduced the MAP2 (microtubule-associated protein 2) levels in activity-induced differentiated PC12 cells. DISCUSSION: Our data led us to propose that NOS2 is putatively involved in the neuronal maturation of the inhibitory afferent pathways during neurodevelopment, and such inadequate inhibition of motor programs might be associated to the observed phenotype.

13.
Neuropharmacology ; 135: 163-171, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550391

RESUMO

The renin-angiotensin system (RAS) is associated with peripheral fluid homeostasis and cardiovascular function, but recent evidence also suggests a functional role in the brain. RAS regulates physiological and behavioral parameters related to the stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain-derived neurotrophic factor (BDNF) and TRKB, which are important in the neurobiology of depression and antidepressant action. However, the interaction between the BDNF/TRKB system and RAS in depression has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into the ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a (a blocker of TRK) infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), also prevented the systemic losartan effect when infused into PL but not into vHC. Cultured cortical cells of rat embryos revealed that angiotensin II (ANG2), possibly through AGTR2, increased the surface levels of TRKB and its coupling to FYN, a SRC family kinase. Higher Agtr2 levels in cortical cells were reduced after stimulation with glutamate, and only under this condition an interaction between losartan and ANG2 was achieved. TRKB/AGTR2 heterodimers were also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, the antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 towards AGTR2, followed by coupling of TRK/FYN and putative TRKB transactivation. Thus, the blockade of AGTR1 has therapeutic potential as a novel antidepressant therapy.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Losartan/farmacologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor trkB/metabolismo , Ativação Transcricional/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Antidepressivos/farmacologia , Captopril/farmacologia , Carbazóis/farmacologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Enalapril/farmacologia , Hipocampo/efeitos dos fármacos , Imidazóis/farmacologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Losartan/antagonistas & inibidores , Masculino , Camundongos , Microinjeções , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Ratos
14.
Brain Res ; 1676: 19-27, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916441

RESUMO

Depression is a common mental disorder that affects millions of individuals worldwide. Available monoaminergic antidepressants are far from ideal since they show delayed onset of action and are ineffective in approximately 40% of patients, thus indicating the need of new and more effective drugs. ATP signaling through P2 receptors seems to play an important role in neuropathological mechanisms involved in depression, since their pharmacological or genetic inactivation induce antidepressant-like effects in the forced swimming test (FST). However, the mechanisms involved in these effects are not completely understood. The present work investigated monoamine involvement in the antidepressant-like effect induced by non-specific P2 receptor antagonist (PPADS) administration. First, the effects of combining sub-effective doses of PPADS with sub-effective doses of fluoxetine (FLX, selective serotonin reuptake inhibitor) or reboxetine (RBX, selective noradrenaline reuptake inhibitor) were investigated in mice submitted to FST. Significant antidepressant-like effect was observed when subeffective doses of PPADS was combined with subeffective doses of either FLX or RBX, with no significant locomotor changes. Next, the effects of depleting serotonin and noradrenaline levels, by means of PCPA (p-Chlorophenylalanine) or DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride) pretreatment, respectively, was investigated. Both, PCPA and DSP-4 pretreatment partially attenuated PPADS-induced effects in FST, without inducing relevant locomotor changes. Our results suggest that the antidepressant-like effect of PPADS involves modulation of serotonin and noradrenaline levels in the brain.


Assuntos
Antidepressivos/farmacologia , Monoaminas Biogênicas/metabolismo , Antagonistas do Receptor Purinérgico P2/farmacologia , Animais , Benzilaminas/farmacologia , Relação Dose-Resposta a Droga , Fenclonina/farmacologia , Fluoxetina/farmacologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Atividade Motora/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Distribuição Aleatória , Reboxetina
15.
Behav Brain Res ; 307: 126-36, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016428

RESUMO

Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure.


Assuntos
Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Natação/psicologia , 2-Amino-5-fosfonovalerato/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Cobalto/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Hipocampo , Masculino , Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
16.
Eur Neuropsychopharmacol ; 25(6): 913-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25840741

RESUMO

A wealth of evidence implicates the BDNF-TRKB system in the therapeutic effects of antidepressant drugs (ADs) on mood disorders. However, little is known about the involvement of this system in the panicolytic property also exerted by these compounds. In the present study we evaluated the participation of the BDNF-TRKB system of the dorsal periaqueductal gray matter (DPAG), a core structure involved in the pathophysiology of panic disorder, in AD-induced panicolytic-like effects in rats. The results showed that short- (3 days) or long-term (21 days) systemic treatment with the tricyclic ADs imipramine, clomipramine or desipramine increased BDNF levels in the DPAG. Only longterm treatment with the selective serotonin reuptake inhibitor fluoxetine was able to increase BDNF levels in this structure. After 21-day treatment, fluoxetine and the three tricyclic ADs used also increased BDNF concentration in the hippocampus, a key area implicated in their mood-related actions. Neither in the DPAG nor hippocampus did long-term treatment with the standard anxiolytics diazepam, clonazepam or buspirone affect BDNF levels. Imipramine, both after short and long-term administration, and fluoxetine under the latter regimen, raised the levels of phosphorylated TRKB in the DPAG. Short-term treatment with imipramine or BDNF microinjection inhibited escape expression in rats exposed to the elevated T maze, considered as a panicolytic-like effect. This anti-escape effect was attenuated by the intra-DPAG administration of the TRK receptor antagonist k252a. Altogether, our data suggests that facilitation of the BDNF-TRKB system in the DPAG is implicated in the panicolytic effect of ADs.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Ansiolíticos/farmacologia , Carbazóis/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Reação de Fuga/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Alcaloides Indólicos/farmacologia , Injeções Intra-Articulares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
17.
Fundam Clin Pharmacol ; 28(5): 544-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24118015

RESUMO

Cannabidiol (CBD), one of the main components of Cannabis sp., presents clinical and preclinical anxiolytic properties. Recent results using the marble-burying test (MBT) suggest that CBD can also induce anticompulsive-like effects. Meta-chloro-phenyl-piperazine (mCPP) is a nonspecific serotonergic agonist (acting mainly at 5HT1A, 5HT2C and 5HT1D receptors) reported to increase symptoms in OCD patients and block the anticompulsive-like effect of serotonin reuptake inhibitors (SRIs) in animal models. The aim of this study was to investigate the interference of CBD on mCPP effects in repetitive burying. Administration of mCPP showed dual effects in the MBT, increasing the number of buried marbles at lower (0.1 mg/kg) while decreasing it at higher doses (1 mg/kg), an effect not related to a general increase in anxiety-like behavior. As found previously, CBD (30 mg/kg) and the positive control fluoxetine (FLX; 10 mg/kg) decreased burying behavior without changing general exploratory activity. A similar effect was found when subeffective doses of CBD (15 mg/kg) and FLX (3 mg/kg) were administered together. These subeffective doses alone were also able to block mCPP-induced repetitive burying. The results, in addition to reinforcing a possible anticompulsive effect of CBD, also suggest that mCPP-induced repetitive burying could be a useful test for the screening of compounds with presumed anticompulsive properties.


Assuntos
Ansiolíticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Canabidiol/farmacologia , Piperazinas/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Transtorno de Movimento Estereotipado/tratamento farmacológico
18.
Eur Neuropsychopharmacol ; 23(12): 1769-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23434291

RESUMO

Activation of purinergic receptors by ATP (P2R) modulates glutamate release and the activation of post-synaptic P2R is speculated to induce nitric oxide (NO) synthesis. Increased glutamatergic and nitrergic signaling have been involved in the neurobiology of stress-related psychiatric disorders such as anxiety and depression. Therefore, the aim of this study was to test the effects of two P2R antagonists (PPADS and iso-PPADS) in animals submitted to models predictive of antidepressant-, anxiolytic- and anticompulsive-like effects. Swiss mice receiving PPADS at 12.5mg/kg showed reduced immobility time in the forced swimming test (FST) similarly to the prototype antidepressant imipramine (30mg/kg). This dose was also able to decrease the number of buried marbles in the marble-burying test (MBT), an anticompulsive-like effect. However, no effect was observed in animals submitted to the elevated plus maze (EPM) and to the open field test. The systemic administration of iso-PPADS, a preferential P2XR antagonist, also reduced the immobility time in FST, which was associated to a decrease in NOx levels in the prefrontal cortex. In addition, P2X7 receptor was found co-immunoprecipitated with neuronal nitric oxide synthase (NOS1) in the prefrontal cortex. These results suggest that P2X7, possibly coupled to NOS1, could modulate behavioral responses associated to stress-related disorders and it could be a new target for the development of more effective treatments for affective disorders.


Assuntos
Antidepressivos/uso terapêutico , Comportamento Compulsivo/tratamento farmacológico , Depressão/tratamento farmacológico , Óxido Nítrico/metabolismo , Antagonistas Purinérgicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Resposta de Imobilidade Tônica/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Antagonistas Purinérgicos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/uso terapêutico , Ratos , Receptores Purinérgicos/metabolismo , Natação/psicologia
19.
Fundam Clin Pharmacol ; 27(6): 650-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437921

RESUMO

The objective of this study was to verify whether phenytoin modifies methylphenidate-induced hyperlocomotion, an animal model for screening antimanic-like drugs, and also evaluate the effect of veratrine, a voltage-gated sodium channel opener, pretreatment on the effect of phenytoin in this model. Carbamazepine was used as a positive control. Methylphenidate (5 mg/kg, s.c.) increased open-field locomotion, and phenytoin (5-10 mg/kg, i.p.) and carbamazepine (20 mg/kg, i.p.) blocked this effect. Veratrine (0.4 mg/kg, s.c.) pretreatment reversed the effects of phenytoin (10 mg/kg, i.p.) and carbamazepine (20 mg/kg, i.p.). Phenytoin (1-50 mg/kg, i.p.) and carbamazepine (10-20 mg/kg i.p.) alone did not change spontaneous locomotor activity. These results indicate that voltage-gated sodium channels play an important role in antimanic-like effects of phenytoin and carbamazepine on psychostimulant-induced hyperlocomotion model.


Assuntos
Antimaníacos/farmacologia , Carbamazepina/farmacologia , Atividade Motora/efeitos dos fármacos , Fenitoína/farmacologia , Animais , Antimaníacos/administração & dosagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/fisiopatologia , Carbamazepina/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Metilfenidato/farmacologia , Camundongos , Fenitoína/administração & dosagem , Veratrina/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
20.
Behav Pharmacol ; 23(1): 80-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22139606

RESUMO

Changes in brain-derived neurotrophic factor (BDNF)-mediated signaling in the hippocampus have been implicated in the etiology of depression and in the mode of action of antidepressant drugs. There is also evidence from animal studies to suggest that BDNF-induced changes in the hippocampus may play a role in another stress-related pathology: anxiety. However, it is still unknown whether this neurotrophin plays a differential role in defensive responses associated with distinguished subtypes of anxiety disorders found in the clinic, such as generalized anxiety and panic disorder. In the present study, we investigated the effect of an acute BDNF injection into the rat dorsal hippocampus (DH) on inhibitory avoidance acquisition and escape expression measured in the elevated T-maze (ETM). We also assessed whether serotonergic neurotransmission may account for such effects. Intra-DH BDNF injection (200 pg) facilitated inhibitory avoidance in ETM. BDNF was equally anxiogenic in the light/dark transition test. Preadministration of the 5-HT1A receptor antagonist WAY-100635 fully counteracted the anxiogenic effect of BDNF in both tests. Intra-DH midazolam administration (10 nmol) impaired avoidance acquisition in ETM, suggesting an anxiolytic effect. Therefore, in the DH, facilitation of BDNF signaling seems to enhance 5-HT1A receptor-mediated neurotransmission to exert an anxiogenic effect associated with generalized anxiety.


Assuntos
Ansiedade/psicologia , Mecanismos de Defesa , Hipocampo/efeitos dos fármacos , Pânico , Receptor 5-HT1A de Serotonina/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Masculino , Aprendizagem em Labirinto , Midazolam/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...